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Abstract: This study uses three machine learning models to perform classification analysis on breast cancer data,

aiming to improve diagnostic accuracy. After data preprocessing and standardization, the performance of each model was

comprehensively evaluated using classification and regression metrics. The results showed that the logistic regression model

performed the best, with an accuracy of 0.9825, while SVM and random forest also showed good performance. The classification

effects of each model were visualized through ROC curves and confusion matrices, demonstrating that logistic regression has

high application value in breast cancer diagnosis.
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1 Introduction

In today's medical field, breast cancer is one of the most

common malignant tumors worldwide, and early accurate

diagnosis is critical for the prognosis and treatment choices of

patients. With the development of machine learning

technology, using data-driven models to assist in breast

cancer diagnosis has become an effective method. Traditional

diagnostic methods rely on the expertise of doctors, while

machine learning models can analyze large datasets to help

doctors quickly identify benign and malignant tumors. This

not only improves diagnostic accuracy but also reduces

misjudgments caused by human error[1]. In this study, we use

three classic machine learning algorithms—Support Vector

Machine (SVM), Random Forest, and Logistic

Regression—to analyze and classify a breast cancer dataset.

The aim is to evaluate the performance of each model and

compare their real-world applicability through multiple

metrics. Through this analysis, we hope to provide more

technical support for automated breast cancer diagnosis,

ultimately enhancing the efficiency and accuracy of clinical

diagnosis.

2 Data Collection and Preparation

In this study, the dataset used is named data.csv, and it

can be downloaded from the following link:

https://www.kaggle.com/datasets/nancyalaswad90/breast-canc

er-dataset?resource=download. As shown in Figure 1, the

breast cancer dataset contains a total of 569 records, which are

used to distinguish between benign and malignant tumor

characteristics. The dataset includes various morphological

features of tumors from patients. Each sample records 10

features such as radius, texture, perimeter, area, smoothness,

compactness, concavity, etc., with each feature further divided

into mean value (_mean), standard error (_se), and maximum

value (_worst). The diagnosis results are labeled as "B" for

benign tumors and "M" for malignant tumors. The "Id"

represents the sample number. This dataset is widely used in

training machine learning models, helping researchers develop

and evaluate classification algorithms aimed at improving the

accuracy of breast cancer diagnosis through data analysis and

prediction, providing valuable support in medical diagnostics.
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Figure 1 Basic Information of Breast Cancer Data

The 10 features in the breast cancer dataset are

categorized as _mean (average), _se (Standard Error), and

_worst (maximum value) to comprehensively describe the

tumor's morphological characteristics. _mean provides an

overall trend of the features, _se reflects the uncertainty or

variability of the measurements, and _worst captures the most

extreme values. This classification method helps the model

analyze the tumor from multiple perspectives, combining the

average trend, variability, and extreme cases, thus enhancing

the model's diagnostic capabilities. By using these

classifications, the model can more accurately distinguish

between benign and malignant tumors, improving the

prediction's accuracy and reliability[2].

3 Basic Statistical Analysis of the Data

3.1 Correlation Classification and Selection of Feature

Values

Since the breast cancer dataset contains 30 feature

values, we categorized these features into four main groups for

more efficient analysis and visualization. First, for basic

morphological features, we selected the tumor's average radius

(radius_mean), perimeter (perimeter_mean), area (area_mean),

and texture (texture_mean) for data visualization. These

features reflect the overall size and shape of the tumor. Second,

based on features of morphological irregularity, we chose

compactness (compactness_mean), concavity

(concavity_mean), concave points (concave_points_mean),

and smoothness (smoothness_mean), which help analyze the

tumor's edge complexity[3]. Additionally, extreme value

features record the tumor’s most extreme measurements, so

we selected the worst radius (radius_worst), worst perimeter

(perimeter_worst), worst area (area_worst), and worst texture

(texture_worst). Finally, for standard error features like radius

standard error (radius_se), perimeter standard error

(perimeter_se), and area standard error (area_se), these

provide information on the variability of the measurements.

These selected features help better understand and predict the

diagnosis of breast cancer.

3.2 Relationship Between Basic Morphological Features

and Diagnostic Results

We selected radius_mean, perimeter_mean, area_mean,

and texture_mean from the breast cancer data as the basic

morphological features. The chart displays the relationship

between these four basic morphological features (radius_mean,

perimeter_mean, area_mean, and texture_mean) and the

diagnostic results (B for benign, M for malignant). Each chart

uses a box plot to show the distribution of feature values

across different diagnostic categories. It is evident that the

median and overall distribution of radius_mean,

perimeter_mean, and area_mean are significantly larger in

malignant tumors (M) than in benign tumors (B), indicating

that these features are larger in malignant cases. The

distribution difference in texture_mean is relatively smaller,

but there is still a slight upward trend in malignant tumors.

The outliers in the box plots further highlight the extreme

distributions of feature values in each category.
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Figure 2 Data Comparison Display in the Scatter Plot

3.3 Relationship Between Morphological Irregularity

Features and Diagnostic Results

Figure 3 shows the distribution of four morphological

irregularity features (compactness_mean, concavity_mean,

concave_points_mean, and smoothness_mean) in benign (B)

and malignant (M) tumors within the breast cancer dataset.

The violin plot illustrates that the distribution ranges for

compactness_mean, concavity_mean, and

concave_points_mean are significantly higher in malignant

tumors, indicating that these features have higher values in

malignant cases. This suggests that tumors with greater

compactness, concavity, and concave points are more likely to

be malignant. In contrast, the distribution of

smoothness_mean shows a smaller difference between benign

and malignant tumors, indicating that smoothness is less

effective in distinguishing between diagnoses[4]. These

observations highlight the importance of morphological

irregularity features in differentiating between benign and

malignant tumors.

Figure 3 Violin Plot Data Comparison Display

3.4 Relationship Between Maximum Value Features and

Diagnostic Results

This kernel density plot shows the distribution of four

maximum value features (radius_worst, perimeter_worst,

area_worst, and texture_worst) in benign (blue) and malignant

(red) tumors within the breast cancer dataset. Overall, the

feature values for malignant tumors are significantly higher

than those for benign tumors, with particularly notable

differences in the radius_worst and area_worst features. These

differences suggest that these features hold significant

reference value in distinguishing between benign and

malignant tumors[5].
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Figure 4 Kernel Density Display of Maximum Value Features for Benign and Malignant Tumors

3.5 Relationship Between Standard Error Features and

Diagnostic Results

Figure 5 shows a scatter plot of the pairwise relationships

between three standard error features (radius_se, perimeter_se,

and area_se) in the breast cancer dataset, with colors

distinguishing between benign (B) and malignant (M) tumors.

The plot reveals a strong positive correlation between these

features, especially between radius_se and perimeter_se, as

well as perimeter_se and area_se, where the scatter points are

nearly linearly distributed. The correlation between radius_se

and area_se is also high, though slightly weaker. The values of

these standard error features tend to be higher in malignant

tumors, indicating that measurement uncertainty is more

pronounced in malignant cases. This uncertainty may reflect

tumor irregularities or complexity, which could influence the

diagnosis.

Figure 5 Scatter Plot Data Comparison Display of Relationships

4 Machine Learning Prediction Models

4.1 Selection of Machine Learning Prediction Models

For the breast cancer dataset, we selected three models

for training: Support Vector Machine (SVM), Logistic

Regression, and Random Forest. The choice of these models is

based on their respective strengths and adaptability to
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classification tasks. SVM excels in handling high-dimensional

data and clear boundary classification problems, and its

flexible kernel functions can effectively manage complex data

distributions[6]. Logistic Regression is simple, easy to interpret,

and particularly suitable for binary classification problems,

providing intuitive probability outputs that help understand the

confidence of diagnoses[7]. Random Forest, by integrating

multiple decision trees, improves model accuracy and

robustness, prevents overfitting, and can automatically handle

feature selection and missing values[8]. This combination of

models allows for a comprehensive evaluation and

optimization of prediction performance in breast cancer

classification tasks.

4.2 Mathematical Principles and Formulas of Machine

Learning Prediction Models

4.2.1 Mathematical Principles and Formula of the Support

Vector Machine (SVM) Model

Mathematical Principle: The goal of the Support Vector

Machine (SVM) is to find the optimal hyperplane that

maximizes the margin between classes for classification. For

linearly separable data, SVM seeks a hyperplane that can

completely separate the data, ensuring that the points closest

to the decision boundary (called support vectors) are as far

from the hyperplane as possible. For a linearly separable

binary classification problem, assume we have a feature vector

� ,and its corresponding label is �. The decision boundary
can be represented as:

� ⋅ �+ � = 0
where � is the weight vector, and � is the bias term.The

objective is to maximize the margin 2
∥�∥ while satisfying the

constraint:

�� � ⋅ �� + � ≥ 1
for all training examples ��,�� .
4.2.2 Mathematical Principles and Formula of Logistic

Regression

Mathematical Principle: Logistic regression is used to

solve binary classification problems. It is based on the linear

regression model but applies the Sigmoid function to constrain

the output between [0,1], providing the probability that a

sample belongs to a particular class. The core formula of

logistic regression is:

� � = 1|� =
1

1+ �− �⋅�+�

where � � = 1|� is the probability that the sample

belongs to class 1, w is the weight vector, � is the feature

vector, � is the bias, and � is the base of the natural

logarithm. The Sigmoid function � � = 1
1+�−�

transforms

the linear combination � ⋅ �+ � into a probability value
between 0 and 1.

4.2.3 Mathematical Principles and Formula of Random

Forest

Mathematical Principle: Random Forest is an ensemble

learning algorithm based on multiple decision trees. It builds

several decision trees using random sampling and random

feature selection, and the final prediction result is obtained

through voting (for classification) or averaging (for regression)
[8]. The basic formula for Random Forest classification is as

follows:

Suppose we have � decision trees, and the prediction
result of each tree is ℎ� � (where � = 1,2, . . . ,�). The
final prediction result for Random Forest classification is

determined by majority voting:

� � = mode{ℎ1 � ,ℎ2 � , . . . , ℎ� � }

where � � is the final predicted class, and mode represents
the most frequent class among the predictions of all trees.

5 Data Preprocessing

During data processing, the first step is to convert the

category labels in the diagnosis column into numerical values

before standardization or model training. We convert 'B' to 0

and 'M' to 1. Then, we remove the 'id' column and select all

columns except diagnosis from the cleaned dataset

(data_cleaned) as the feature variables X, and set the diagnosis

column as the target variable y. Here, X contains the tumor’s

numerical features, while y represents the diagnostic result

(benign or malignant). Next, we split the dataset into 70%

training and 30% testing sets, using random_state=42 to

ensure the split is reproducible. Finally, we use StandardScaler

to standardize the feature data in both the training and testing

sets, adjusting the data to have a mean of 0 and a standard

deviation of 1[9]. This eliminates the differences in scale

between features, improving the effectiveness of model

training and prediction accuracy.

6 Experimental Results

6.1 ROC Curve Analysis of the Three Models

Figure 7 presents the ROC curves for the three models

(SVM, Logistic Regression, and Random Forest). Each model
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has an AUC value of 1.00, indicating very high classification

performance on the breast cancer dataset. The ROC curve

shows the classification results at different thresholds, with the

x-axis representing the False Positive Rate and the y-axis

representing the True Positive Rate. An AUC of 1.00 signifies

that the models can perfectly differentiate between benign and

malignant tumors. By comparing the curves, it is clear that all

models closely approach the top-left corner, indicating

excellent performance with nearly no misclassifications.

Figure 7 ROC Curve

6.2 Evaluation Performance Metrics for Each Model

Table 1 evaluates the prediction performance of each

model using Mean Squared Error (MSE), Mean Absolute

Error (MAE), and the Coefficient of Determination (R²) [10].

The results show that Logistic Regression performs the best

across all three metrics, with the lowest MSE and MAE of

0.0175, and the highest R² of 0.9246, indicating the strongest

fitting ability. SVM follows with an MSE of 0.0233 and R² of

0.8994. Random Forest performs slightly worse, with both

MSE and MAE at 0.0292, and an R² of 0.8743. Overall,

Logistic Regression demonstrates the best prediction accuracy

and fitting performance.

Table 1

6.3 Random Forest Classification Model Prediction

Results Analysis

Table 2 presents the classification performance metrics

of the three models (SVM, Random Forest, and Logistic

Regression) on the breast cancer dataset. The models were

evaluated using Precision, Recall, and F1 scores, analyzing

both class labels (0 for benign and 1 for malignant) [11]. The

results show that Logistic Regression performed best overall

in terms of accuracy, precision, recall, and F1 score, with an

accuracy of 0.9825, indicating the strongest classification

ability. The SVM model performed slightly worse but still

maintained high accuracy and strong metrics. The Random

Forest model had a slightly lower recall for malignant tumors

(1), with a recall rate of 0.94, but its overall performance was

still very close to the other models. Overall, Logistic

Regression was the best-performing model in this experiment.

Model MSE MAE R²

源极电压 U/V 1050 900 950SVM 0.0233 0.0234 0.8994

Random Forest 0.0292 0.0292 0.8743

Logistic Regression 0.0175 0.0175 0.9246
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Table 2

7 Conclusion

In this analysis and prediction experiment using the

breast cancer dataset, we employed three models—Support

Vector Machine (SVM), Random Forest, and Logistic

Regression—for classification and performance evaluation.

First, we preprocessed the dataset, including feature

standardization and converting the target variable to numerical

values. Then, the data was split into training and test sets, and

each model was trained and tested. We comprehensively

evaluated the models using classification metrics such as

accuracy, precision, recall, and F1 score, as well as regression

metrics like MSE, MAE, and R².

The experimental results showed that the Logistic

Regression model performed best across all metrics, achieving

an accuracy of 0.9825 and demonstrating strong classification

ability. The SVM model followed closely, also performing

excellently. Although the Random Forest model had some

errors in classifying malignant tumors, it still maintained high

accuracy and robustness overall. The ROC curve and

confusion matrix visualizations provided an intuitive display

of each model's classification performance at different

thresholds. Ultimately, the Logistic Regression model proved

to be the best-performing model in this experiment.

References

[1] Ara S, Das A, Dey A. Malignant and benign breast

cancer classification using machine learning

algorithms[C]//2021 International Conference on

Artificial Intelligence (ICAI). IEEE, 2021: 97-101.

[2] Rabiei R, Ayyoubzadeh S M, Sohrabei S, et al.

Prediction of breast cancer using machine learning

approaches[J]. Journal of biomedical physics &

engineering, 2022, 12(3): 297.

[3] Laghmati S, Tmiri A, Cherradi B. Machine learning

based system for prediction of breast cancer

severity[C]//2019 International Conference on Wireless

Networks and Mobile Communications (WINCOM).

IEEE, 2019: 1-5.

[4] Naji M A, El Filali S, Aarika K, et al. Machine learning

algorithms for breast cancer prediction and diagnosis[J].

Procedia Computer Science, 2021, 191: 487-492.

[5] Chaurasia V, Pal S, Tiwari B B. Prediction of benign and

malignant breast cancer using data mining techniques[J].

Journal of Algorithms & Computational Technology,

2018, 12(2): 119-126.

[6] Pisner D A, Schnyer D M. Support vector

machine[M]//Machine learning. Academic Press, 2020:

101-121.

[7] Rigatti S J. Random forest[J]. Journal of Insurance

Medicine, 2017, 47(1): 31-39.

[8] Hilbe J M. Logistic regression models[M]. Chapman and

hall/CRC, 2009.

[9] Qiao Y, Li K, Lin J, et al. Robust Domain Generalization

for Multi-modal Object Recognition[J]. arXiv preprint

arXiv:2408.05831, 2024.

[10]Rawal R. Breast cancer prediction using machine

learning[J]. Journal of Emerging Technologies and

Innovative Research (JETIR), 2020, 13(24): 7.

Dalal S, Onyema E M, Kumar P, et al. A hybrid machine

learning model for timely prediction of breast cancer[J].

International Journal of Modeling, Simulation, and

Scientific Computing, 2023, 14(04): 2341023.

Model Accuracy Precision

（0）

Precision

（1）

Recall

(0)

Recall

(1)

F1

(0)

F1

(1)

源极电压 U/V 1050 900 950SVM 0.9766 0.98 0.97 0.98 0.97 0.98 0.97

Random Forest 0.9708 0.96 0.98 0.99 0.94 0.98 0.96

Logistic Regression 0.9825 0.99 0.97 0.98 0.98 0.99 0.97


